The Pu.1 target gene Zbtb11 regulates neutrophil development through its integrase-like HHCC zinc finger

نویسندگان

  • Maria-Cristina Keightley
  • Duncan P Carradice
  • Judith E Layton
  • Luke Pase
  • Julien Y Bertrand
  • Johannes G Wittig
  • Aleksandar Dakic
  • Andrew P Badrock
  • Nicholas J Cole
  • David Traver
  • Stephen L Nutt
  • Julia McCoey
  • Ashley M Buckle
  • Joan K Heath
  • Graham J Lieschke
چکیده

In response to infection and injury, the neutrophil population rapidly expands and then quickly re-establishes the basal state when inflammation resolves. The exact pathways governing neutrophil/macrophage lineage outputs from a common granulocyte-macrophage progenitor are still not completely understood. From a forward genetic screen in zebrafish, we identify the transcriptional repressor, ZBTB11, as critical for basal and emergency granulopoiesis. ZBTB11 sits in a pathway directly downstream of master myeloid regulators including PU.1, and TP53 is one direct ZBTB11 transcriptional target. TP53 repression is dependent on ZBTB11 cys116, which is a functionally critical, metal ion-coordinating residue within a novel viral integrase-like zinc finger domain. To our knowledge, this is the first description of a function for this domain in a cellular protein. We demonstrate that the PU.1-ZBTB11-TP53 pathway is conserved from fish to mammals. Finally, Zbtb11 mutant rescue experiments point to a ZBTB11-regulated TP53 requirement in development of other organs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional interactions of the HHCC domain of moloney murine leukemia virus integrase revealed by nonoverlapping complementation and zinc-dependent dimerization.

The retroviral integrase (IN) is required for the integration of viral DNA into the host genome. The N terminus of IN contains an HHCC zinc finger-like motif, which is conserved among all retroviruses. To study the function of the HHCC domain of Moloney murine leukemia virus IN, the first N-terminal 105 residues were expressed independently. This HHCC domain protein is found to complement a com...

متن کامل

Assembly and catalysis of concerted two-end integration events by Moloney murine leukemia virus integrase.

Retroviral integration results in the stable and coordinated insertion of the two termini of the linear viral DNA into the host genome. An in vitro concerted two-end integration reaction catalyzed by the Moloney murine leukemia virus (M-MuLV) integrase (IN) was used to investigate the binding and coordination of the two viral DNA ends. Comparison of the two-end integration and strand transfer a...

متن کامل

The solution structure of the amino-terminal HHCC domain of HIV-2 integrase: a three-helix bundle stabilized by zinc

BACKGROUND Integrase mediates a crucial step in the life cycle of the human immunodeficiency virus (HIV). The enzyme cleaves the viral DNA ends in a sequence-dependent manner and couples the newly generated hydroxyl groups to phosphates in the target DNA. Three domains have been identified in HIV integrase: an amino-terminal domain, a central catalytic core and a carboxy-terminal DNA-binding do...

متن کامل

Fusion proteins consisting of human immunodeficiency virus type 1 integrase and the designed polydactyl zinc finger protein E2C direct integration of viral DNA into specific sites.

In order to establish a productive infection, a retrovirus must integrate the cDNA of its RNA genome into the host cell chromosome. While this critical process makes retroviruses an attractive vector for gene delivery, the nonspecific nature of integration presents inherent hazards and variations in gene expression. One approach to alleviating the problem involves fusing retroviral integrase to...

متن کامل

PU.1 and partners: regulation of haematopoietic stem cell fate in normal and malignant haematopoiesis

During normal haematopoiesis, cell development and differentiation programs are accomplished by switching 'on' and 'off' specific set of genes. Specificity of gene expression is primarily achieved by combinatorial control, i.e. through physical and functional interactions among several transcription factors that form sequence-specific multiprotein complexes on regulatory regions (gene promoters...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017